Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 663
Filtrar
1.
J Agric Food Chem ; 72(13): 7336-7343, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38508871

RESUMO

Molecular docking has been widely applied in the discovery of new sweeteners, yet the interpretation of computational results sometimes remains difficult. Here, the interaction between the T1R2-T1R3 sweet taste receptor and 66 tasting compounds, including 26 sweet, 19 bitter, and 21 sour substances was investigated by batch molecular docking processes. Statistical analysis of the docking results generated two novel methods of interpreting taste properties. Quantitative correlation between relative sweetness (RS) and docking results created a multiparameter model to predict sweetness intensity, whose correlation coefficient r = 0.74 is much higher than r = 0.17 for the linear correlation model between sweetness and binding energy. The improved correlation indicated that docking results besides binding energy contain undiscovered information about the ligand-protein interaction. Qualitative discriminant analysis of different tasting molecules generated an uncorrelated linear discriminant analysis (UDLA) model, which achieved an overall 93.1% accuracy in discriminating the taste of molecules, with specific accuracy for verifying sweet, bitter, and sour compounds reaching 88.0%, 92.1%, and 100%. These unprecedented models provide a unique perspective for interpreting computational results and may inspire future research on sweetener discovery.


Assuntos
Edulcorantes , Paladar , Edulcorantes/química , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G/metabolismo , Percepção Gustatória
2.
J Agric Food Chem ; 72(13): 7374-7382, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526016

RESUMO

Brazzein (Brz) is a sweet-tasting protein composed of 54 amino acids and is considered as a potential sugar substitute. The current methods for obtaining brazzein are complicated, and limited information is available regarding its thermal stability. In this study, we successfully expressed recombinant brazzein, achieving a sweetness threshold of 15.2 µg/mL. Subsequently, we conducted heat treatments at temperatures of 80, 90, 95, and 100 °C for a duration of 2 h to investigate the structural changes in the protein. Furthermore, we employed hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) to analyze the effect of heating on the protein structure-sweetness relationships. Our results indicated that the thermal inactivation process primarily affects residues 6-14 and 36-45 of brazzein, especially key residues Tyr8, Tyr11, Ser14, Glu36, and Arg43, which are closely associated with its sweetness. These findings have significant implications for improving the thermal stability of brazzein.


Assuntos
Proteínas de Plantas , Edulcorantes , Proteínas de Plantas/metabolismo , Edulcorantes/química , Paladar
3.
J Med Chem ; 67(5): 3232-3243, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482829

RESUMO

The molecular origin of the sweet taste is still elusive. Herein, the canonical AH-B-X theory of sweet taste is extended by resurveying various sweeteners, which provides deeper insights into an analogous intramolecular connectivity pattern of both glucophores in sweeteners and their interaction counterparts in sweet taste receptor TAS1R2/TAS1R3: electrostatic complementarity and topochemical compatibility. Furthermore, their complementary interaction is elaborately illustrated, accounting for the common molecular feature of eliciting sweetness. Moreover, it highlights that multiple glucophores in a topological system synergistically mediate the elicitation and performance of sweetness. This perspective presents a meaningful framework for the structure-activity relationship-based molecular design and modification of sweeteners and sheds light on the mechanism of molecular evolution of TAS1R2s/TAS1R3s. The link between palatability of sweeteners and harmony relationships between their structural components via stereochemistry and network has significant implications to illuminate the underlying mechanisms by which nature designs chemical reactions to elicit the most important taste.


Assuntos
Edulcorantes , Paladar , Edulcorantes/química , Relação Estrutura-Atividade , Receptores Acoplados a Proteínas G/química
4.
PLoS One ; 19(2): e0298251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38412182

RESUMO

Stevia rebaudiana Bertoni water extracts have been used as a natural sweetener and customary medicine by the indigenous inhabitants of South America for several hundred years. This plant was sent to Europe in the 16th century and was described by Peter Jacob Esteve in Spain. Recently the food industry has started to employ S. rebaudiana as sweetener using its glycosides after purification. Advertisement claims that Stevia glycosides is good for controling body mass and reducing glycemia. This study's objective was to evaluate the effect of S. rebaudiana leaf extract on Wistar rats as animal model to prove its effectiveness on body mass control, glycemia reduction, and other biochemical parameters. Three groups were randomly formed with 24 males and 24 females: A blank group without any sweetener, a control group drinking water with 10% glucose, and the test group ingesting a 0.94% water extract of S. rebaudiana. Body mass measurements as well as food and drink consumption were daily performed. The experiment lasted 120 days after the specimens were weaned and got used to eating solid food. Euthanasia was done and blood serum was collected to evaluate the following biochemical parameters: Glucose, triglycerides, cholesterol, insulin, glucagon, leptin, ghrelin, and glucose-dependent insulinotropic peptide, GIP. Results indicated that only female rats had statistical differences in body mass gain. No relevant effects either positive or negative were found in the biochemical parameters measured. The crude extracts of S. rebaudiana did not show any relevant changes in biochemical and hormonal profiles, changes nor body mass with respect to the blank and control groups of young and healthy rats in the age range of infancy to youth. According to the results obtained, the therapeutic properties that have been associated to S. rebaudiana consumption especially for body mass control and glycemia reduction, did not occur in young and healthy male and female rats in equivalent age to infants, young children, and youths.


Assuntos
Stevia , Masculino , Adolescente , Feminino , Criança , Ratos , Humanos , Animais , Pré-Escolar , Stevia/química , Edulcorantes/farmacologia , Edulcorantes/química , Ratos Wistar , Extratos Vegetais/química , Glicosídeos , Glucose , Água , Folhas de Planta
5.
Food Chem ; 440: 138279, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159314

RESUMO

Sweet proteins offer a promising solution as sugar substitutes by providing a sugar-like sweetness without the negative health impacts linked to sugar or artificial sweeteners. However, the low thermal stability of sweet proteins has hindered their applications. In this study, we took a computational approach utilizing ΔΔG calculations in PyRosetta to enhance the thermostability of single-chain monellin (MNEI). By generating and characterizing 21 variants with single mutation, we identified 11 variants with higher melting temperature (Tm) than that of MNEI. To further enhance the thermal stability, we conducted structural analysis and designed an additional set of 14 variants with multiple mutations. Among these variants, four exhibited a significant improvement in thermal stability, with an increase of at least 20 °C (Tm > 96 °C) compared to MNEI, while maintaining their sweetness. Remarkably, these variants remained soluble even after being heated in boiling water for one hour. Moreover, they displayed exceptional stability across alkaline, acidic and neutral environments. These findings highlight the tremendous potential of these variants for applications in the food and beverage industry. Additionally, this study provides valuable strategies for protein engineering to enhance the thermal stability of sweet proteins.


Assuntos
Proteínas de Plantas , Engenharia de Proteínas , Proteínas de Plantas/metabolismo , Temperatura Alta , Edulcorantes/química , Açúcares
6.
Biosci Biotechnol Biochem ; 87(12): 1470-1477, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37715303

RESUMO

Neohesperidin dihydrochalcone (NHDC) is a sweetener, which interacts with the transmembrane domain (TMD) of the T1R3 subunit of the human sweet taste receptor. Although NHDC and a sweet taste inhibitor lactisole share similar structural motifs, they have opposite effects on the receptor. This study involved the creation of an NHDC-docked model of T1R3 TMD through mutational analyses followed by in silico simulations. When certain NHDC derivatives were docked to the model, His7345.44 was demonstrated to play a crucial role in activating T1R3 TMD. The NHDC-docked model was then compared with a lactisole-docked inactive form, several residues were characterized as important for the recognition of NHDC; however, most of them were distinct from those of lactisole. Residues such as His6413.33 and Gln7947.38 were found to be oriented differently. This study provides useful information that will facilitate the design of sweeteners and inhibitors that interact with T1R3 TMD.


Assuntos
Chalconas , Receptores Acoplados a Proteínas G , Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Hesperidina/análogos & derivados , Chalconas/química , Simulação de Acoplamento Molecular , Humanos , Edulcorantes/química , Estrutura Molecular
7.
J Agric Food Chem ; 71(38): 13950-13964, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37698386

RESUMO

Long-term consumption of a high-sugar diet may contribute to the pathogenesis of several chronic diseases, such as obesity and type 2 diabetes. Sweet peptides derived from a wide range of food sources can enhance sweet taste without compromising the sensory properties. Therefore, the research and application of sweet peptides are promising strategies for reducing sugar consumption. This work first outlined the necessity for global sugar reduction, followed by the introduction of sweet taste receptors and their associated transduction mechanisms. Subsequently, recent research progress in sweet peptides from different protein sources was summarized. Furthermore, the main methods for the preparation and evaluation of sweet peptides were presented. In addition, the current challenges and potential applications are also discussed. Sweet peptides can stimulate sweetness perception by binding sweet taste receptors T1R2 and T1R3 in taste buds, which is an effective strategy for reducing sugar consumption. At present, sweet peptides are mainly prepared artificially by synthesis, hydrolysis, microbial fermentation, and bioengineering strategies. Furthermore, sensory evaluation, electronic tongues, and cell models have been used to assess the sweet taste intensity. The present review can provide a theoretical reference for reducing sugar consumption with the aid of sweet peptides in the food industry.


Assuntos
Diabetes Mellitus Tipo 2 , Papilas Gustativas , Humanos , Paladar/fisiologia , Edulcorantes/química , Diabetes Mellitus Tipo 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Papilas Gustativas/metabolismo , Carboidratos , Peptídeos/metabolismo , Açúcares/metabolismo , Açúcares da Dieta/metabolismo , Percepção Gustatória/fisiologia
8.
J Agric Food Chem ; 71(29): 11158-11169, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37432401

RESUMO

Steviol glycosides obtained from Stevia rebaudiana leaves are increasingly used in the food industry as natural low-calorie sweeteners. Among them, the sweetness of major glycosides composed of glucose residues (e.g., stevioside and rebaudioside A) has been widely studied. However, the properties of minor natural products containing rhamnose or xylose residues are poorly investigated. In this study, five unreported steviol glycosides containing rhamnose or xylose were extracted from our developing stevia leaves, and their sweetness was evaluated. The highly glycosylated steviol glycosides were identified, and their structures were examined by fragmentation analysis using mass spectrometry. Chemical synthesis of these glycosides confirmed their structures and allowed sensory evaluation of minor steviol glycosides. Our study revealed that a xylose-containing glycoside, rebaudioside FX1, exhibits a well-balanced sweetness, and thus, it is a promising candidate for natural sweeteners used in the food industry.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Stevia/química , Ramnose , Xilose , Diterpenos do Tipo Caurano/química , Glicosídeos/química , Edulcorantes/química , Folhas de Planta/química
9.
Food Chem ; 426: 136580, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331142

RESUMO

With growing concerns over the health impact of sugar, brazzein offers a viable alternative due to its sweetness, thermostability, and low risk profile. Here, we demonstrated the ability of protein language models to design new brazzein homologs with improved thermostability and potentially higher sweetness, resulting in new diverse optimized amino acid sequences that improve structural and functional features beyond what conventional methods could achieve. This innovative approach resulted in the identification of unexpected mutations, thereby generating new possibilities for protein engineering. To facilitate the characterization of the brazzein mutants, a simplified procedure was developed for expressing and analyzing related proteins. This process involved an efficient purification method using Lactococcus lactis (L. lactis), a generally recognized as safe (GRAS) bacterium, as well as taste receptor assays to evaluate sweetness. The study successfully demonstrated the potential of computational design in producing a more heat-resistant and potentially more palatable brazzein variant, V23.


Assuntos
Proteínas de Plantas , Edulcorantes , Proteínas de Plantas/metabolismo , Edulcorantes/química , Paladar , Sequência de Aminoácidos , Engenharia de Proteínas
10.
J Phys Chem B ; 127(5): 1110-1119, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36705604

RESUMO

It is nowadays widely accepted that sweet taste perception is elicited by the activation of the heterodimeric complex T1R2-T1R3, customarily known as sweet taste receptor (STR). However, the interplay between STR and sweeteners has not yet been fully clarified. Here through a methodology coupling molecular dynamics and the independent gradient model (igm) approach we determine the main interacting signatures of the closed (active) conformation of the T1R2 Venus flytrap domain (VFD) toward aspartame. The igm methodology provides a rapid and reliable quantification of noncovalent interactions through a score (Δginter) based on the attenuation of the electronic density gradient when two molecular fragments approach each other. Herein, this approach is coupled to a 100 ns molecular dynamics simulation (MD-igm) to explore the ligand-cavity contacts on a per-residue basis as well as a series of key inter-residue interactions that stabilize the closed form of VFD. We also apply an atomic decomposition scheme of noncovalent interactions to quantify the contribution of the ligand segments to the noncovalent interplay. Finally, a series of structural modification on aspartame are conducted in order to obtain guidelines for the rational design of novel sweeteners. Given that innovative methodologies to reliably quantify the extent of ligand-protein coupling are strongly demanded, this approach combining a noncovalent analysis and MD simulations represents a valuable contribution, that can be easily applied to other relevant biomolecular systems.


Assuntos
Aspartame , Paladar , Paladar/fisiologia , Aspartame/química , Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/química , Ligantes , Edulcorantes/química , Imunoglobulina M
11.
J Biomol Struct Dyn ; 41(13): 6262-6271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35916031

RESUMO

Acesulfame potassium (Ace-K) is a widely used artificial sweetener that has been reported to interact with DNA and cause important genetic damage. However, the type of interaction mechanism is unknown. This study provides an approach to understanding the in vitro mechanism of Ace-K interaction with Ct-DNA using spectroscopic methods combined with molecular simulations. The hypochromic effect as obtained from UV-Vis spectra indicated the formation of the DNA-Ace-K complex in the minor groove. Further evidence for groove binding mode comes from the decrease in Hoechst-DNA fluorescence caused by increasing Ace-K concentrations, alongside no detectable change in MB-DNA emission band intensity. A negative value of ΔH and ΔS represents the hydrogen bonds and van der Waals forces between Ace-K and DNA. Based on the molecular docking, Ace-K was located between the guanine10 and 16 in DNA minor groove and stabilized by two hydrogen bonds and one π-Sulfur interaction. In vitro cell culture results showed that about 5 mg/mL of Ace-K caused the death of 85% of HUVEC cells after 48 h. Communicated by Ramaswamy H. Sarma.


Assuntos
Dano ao DNA , Edulcorantes , Edulcorantes/química , Simulação de Acoplamento Molecular , Células Endoteliais da Veia Umbilical Humana , Humanos , Estrutura Molecular
12.
Mol Biol Rep ; 50(3): 2283-2291, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36576674

RESUMO

BACKGROUND: Stevia rebaudiana is a medicinal herb that accumulates non-caloric sweeteners called steviol glycosides (SGs) which are approximately 300 times sweeter than sucrose. This study used alginate (ALG) as an elicitor to increase steviol glycosides accumulation and elucidate gene transcription in the steviol glycosides biosynthesis pathway. METHODS AND RESULTS: To minimize the grassy taste associated with stevia sweeteners, plantlets were grown in complete darkness. ALG was applied to stevia plants grown in suspension culture with a Murashige and Skoog (MS) medium to determine its effect on SGs' content and the transcription profile of SG-related genes using the HPLC and RT-qPCR methods, respectively. Treatment with alginate did not significantly affect plantlet growth parameters such as shoot number, dry and fresh weight. Rebaudioside A (Reb A) content increased approximately sixfold in the presence of 1g L-1 alginate and KS, KAH, and UGT74G1 genes showed significant up-regulation. When the concentration was increased to 2g L-1, the transcription of KO and UGT76G1, responsible for the conversion of stevioside to Reb A, was increased about twofold. CONCLUSIONS: The current study proposes that adding alginate to the MS suspension medium can increase Reb A levels by altering the SG biosynthesize pathway's transcription profile. The present experiment provides new insights into the biochemical and transcriptional response mechanisms of suspension-cultured stevia plants to alginate.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Stevia/genética , Stevia/metabolismo , Edulcorantes/farmacologia , Edulcorantes/química , Edulcorantes/metabolismo , Alginatos , Glucosídeos/metabolismo , Diterpenos do Tipo Caurano/metabolismo , Glicosídeos/farmacologia , Folhas de Planta/metabolismo
13.
Compr Rev Food Sci Food Saf ; 22(1): 615-642, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36524621

RESUMO

For health and safety concerns, traditional high-calorie sweeteners and artificial sweeteners are gradually replaced in food industries by natural and low-calorie sweeteners. As a natural and high-quality sugar substitute, steviol glycosides (SvGls) are continually scrutinized regarding their safety and application. Recently, the cultivation of organic stevia has been increasing in many parts of Europe and Asia, and it is obvious that there is a vast market for sugar substitutes in the future. Rebaudioside A, the main component of SvGls, is gradually accepted by consumers due to its safe, zero calories, clear, and sweet taste with no significant undesirable characteristics. Hence, it can be used in various foods or dietary supplements as a sweetener. In addition, rebaudioside A has been demonstrated to have many physiological functions, such as antihypertension, anti-diabetes, and anticaries. But so far, there are few comprehensive reviews of rebaudioside A. In this review article, we discuss the physicochemical properties, metabolic process, safety, regulatory, health benefits, and biosynthetic pathway of rebaudioside A and summarize the modification methods and state-of-the-art production and purification techniques of rebaudioside A. Furthermore, the current problems hindering the future production and application of rebaudioside A are analyzed, and suggestions are provided.


Assuntos
Açúcares da Dieta , Stevia , Açúcares da Dieta/metabolismo , Edulcorantes/química , Edulcorantes/metabolismo , Aditivos Alimentares , Stevia/química , Stevia/metabolismo
14.
Sci Rep ; 12(1): 21979, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539522

RESUMO

Many of plant proteins exhibit the properties similar to the antitumor proteins although the anticancer activity of Brazzein on modulating the autophagy signaling pathway has not been determined so far. The present study aimed to develop a simplified system to enable the rational design of the activating extracellular domain of human Toll-like receptor 5 (hTLR5). To identify the anticancer effect of Brazzein, HADDOCK program and molecular dynamics (MD) simulation were applied to examine the binding of the wild type (WT) and p.A19K mutant of Brazzein to the TLR5. The expression of MAP1S and TNF-α genes was estimated based on real-time PCR. The results clearly confirmed that the WT of Brazzein activated hTLR5 in the MCF-7 cell line since the genes were more and significantly less expressed in the cells treated with the WT and p.A19K mutant than the control, respectively. The snapshots of MD simulation exhibit the consistent close interactions of hTLR5 with the two helices of Brazzein on its lateral side. The results of per residue-free energy decomposition analysis substantiate those of intermolecular contact analysis perfectly one. We propose that the WT of Brazzein can act as an antitumor drug candidate.


Assuntos
Simulação de Dinâmica Molecular , Receptor 5 Toll-Like , Humanos , Simulação de Acoplamento Molecular , Edulcorantes/química , Estrutura Secundária de Proteína , Proteínas de Plantas/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-36294262

RESUMO

Maple syrup is a delicacy prepared by boiling the sap taken from numerous Acer species, primarily sugar maple trees. Compared to other natural sweeteners, maple syrup is believed to be preferable to refined sugar for its high concentration of phenolic compounds and mineral content. The presence of organic acids (malic acid), amino acids and relevant amounts of minerals, such as potassium, calcium, zinc and manganese, make maple syrup unique. Given the growing demand for naturally derived sweeteners over the past decade, this review paper deals with and discusses in detail the most important aspects of chemical maple syrup analyses, with a particular emphasis on the advantages and disadvantages of the different analytical approaches. A successful utilization on the application of maple syrup in the food industry, will rely on a better understanding of its safety, quality control, nutritional profile, and health impacts, including its sustainability issues.


Assuntos
Acer , Acer/química , Cálcio , Manganês , Edulcorantes/química , Indústria Alimentícia , Açúcares , Controle de Qualidade , Zinco , Aminoácidos , Potássio
16.
Artigo em Inglês | MEDLINE | ID: mdl-35742286

RESUMO

Agave syrup (AS), a food product made from agave plant sap, is a vegan sweetener that has become popular for replacing conventional sweeteners such as sucrose. As the demand for naturally derived sweeteners has grown in the last decade, this review paper addresses and discusses, in detail, the most relevant aspects of the chemical AS analysis, applications in the food industry, sustainability issues, safety and quality control and, finally, nutritional profile and health impacts. According to our main research outcome, we can assume that the mid-infrared-principal components analysis, high-performance anion exchange chromatography equipped with a pulsed amperometric detector, and thin-layer chromatography can be used to identify and distinguish syrups from natural sources. The main agave-derived products are juice, leaves, bagasse, and fiber. In sustainability terms, it can be stated that certified organic and free trade agave products are the most sustainable options available on the market because they guarantee products being created without pesticides and according to specific labor standards. The Mexican government and AS producers have also established Mexican guidelines which prohibit using any ingredient, sugar or food additive that derives from sources, apart from agave plants, to produce any commercial AS. Due to its nutritional value, AS is a good source of minerals, vitamins and polyphenols compared to other traditional sweeteners. However, further research into the effects of AS on human metabolism is necessary to back its health claims as a natural sugar substitute.


Assuntos
Agave , Agave/química , Carboidratos/análise , Aditivos Alimentares , Indústria Alimentícia , Humanos , Edulcorantes/química
17.
Biotechnol Adv ; 60: 107990, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35640819

RESUMO

Sucrose, one of the most widespread disaccharides in nature, has been available in daily human life for many centuries. As an abundant and cheap sweetener, sucrose plays an essential role in our diet and the food industry. However, it has been determined that many diseases, such as obesity, diabetes, hyperlipidemia, etc., directly relate to the overconsumption of sucrose. It arouses many explorations for the conversion of sucrose to high-value chemicals. Production of valuable substances from sucrose by chemical methods has been studied since a half-century ago. Compared to chemical processes, biotechnological conversion approaches of sucrose are more environmentally friendly. Many enzymes can use sucrose as the substrate to generate functional sugars, especially those from GH68, GH70, GH13, and GH32 families. In this review, enzymatic catalysis and whole-cell fermentation of sucrose for the production of valuable chemicals were reviewed. The multienzyme cascade catalysis and metabolic engineering strategies were addressed.


Assuntos
Dissacarídeos , Sacarose , Biotecnologia , Humanos , Sacarose/metabolismo , Açúcares/metabolismo , Edulcorantes/química
18.
Food Chem ; 389: 132996, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35500407

RESUMO

Thaumatin is an intensely sweet-tasting protein. Its sweetness persists when heated under acidic conditions, but disappears when heated at a pH above 7.0. To clarify how the structural features of thaumatin resist insoluble aggregation during heating under acidic conditions, we analysed its crystal structure obtained at pH 4.0, 6.0, and 8.0. Simultaneously, the melting temperature (Tm) at these pH levels was determined using differential scanning fluorimetry. At pH 4.0, the Tm of thaumatin was substantially lower and the overall B-factor value of its structure was higher than those at pH 6.0. Interestingly, the relative B-factor values for most lysine residues decreased as the pH reduced. These results suggest that the overall structure at pH 4.0 becomes flexible but the relative flexibility of some regions is lower than that at pH 6.0. Thus, the reduction in relative flexibility might play an important role in preventing thermal aggregation, thereby maintaining the sweetness.


Assuntos
Lisina , Edulcorantes , Aditivos Alimentares , Temperatura Alta , Lisina/química , Proteínas de Plantas/química , Conformação Proteica , Edulcorantes/química
19.
Bioengineered ; 13(4): 9815-9828, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35435127

RESUMO

Owing to various undesirable health effects of sugar overconsumption, joint efforts are being made by industrial sectors and regulatory authorities to reduce sugar consumption practices, worldwide. Artificial sweeteners are considered potential substitutes in several products, e.g., sugar alcohols (polyols), high-fructose corn syrup, powdered drink mixes, and other beverages. Nevertheless, their long-standing health effects continue to be debatable. Consequently, growing interest has been shifted in producing non-caloric sweetenersfrom renewable resources to meet consumers' dietary requirements. Except for the lysozyme protein, various sweet proteins including thaumatin, mabinlin, brazzein, monellin, miraculin, pentadin, and curculin have been identified in tropical plants. Given the high cost and challenging extortion of natural resources, producing these sweet proteins using engineered microbial hosts, such as Yarrowia lipolytica, Pichia pastoris, Hansenula polymorpha, Candida boidinii, Arxula adeninivorans, Pichia methanolica, Saccharomyces cerevisiae, and Kluyveromyces lactis represents an appealing choice. Engineering techniques can be applied for large-scale biosynthesis of proteins, which can be used in biopharmaceutical, food, diagnostic, and medicine industries. Nevertheless, extensive work needs to be undertaken to address technical challenges in microbial production of sweet-tasting proteins in bulk. This review spotlights historical aspects, physicochemical properties (taste, safety, stability, solubility, and cost), and recombinant biosynthesis of sweet proteins. Moreover, future opportunities for process improvement based on metabolic engineering strategies are also discussed.


Assuntos
Bioprospecção , Paladar , Biotecnologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Edulcorantes/química
20.
FEBS Open Bio ; 12(7): 1336-1343, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35417094

RESUMO

Brazzein has excellent potential for use as a sweetener because of its high level of sweetening potency and stability against extreme temperature and pH. It is extracted from the tropical and difficult-to-cultivate African plant Pentadiplandra brazzeana, which hampers its commercial viability. Here we report the mammary-specific expression of wildtype or triple mutational (H31R/E36D/E41A) des-pGlu brazzeins in the milk of transgenic mice. Using enzyme-linked immunoassay (ELISA), western blot, and sweetness intensity testing, we confirmed that the triple mutation made the des-pGlu brazzein molecule 10,000 times sweeter than sucrose in a weight base, even after 10 min of incubation at 100 °C; in addition, the triple mutant was also significantly sweeter than the wildtype des-pGlu brazzein. This study provides new insights for producing brazzein or brazzein-sweetened milk from animals for use in food and healthcare applications.


Assuntos
Leite , Proteínas de Plantas , Animais , Camundongos , Camundongos Transgênicos , Leite/metabolismo , Mutação/genética , Proteínas de Plantas/genética , Edulcorantes/química , Edulcorantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...